

TETRA ASSOCIATION

INTEGRATING RADIO COMMUNICATIONS FOR ADVANCED CONTROL ON METROS

Peter Clemons

Director of Communications, TELTRONIC Member of the Board, TETRA ASSOCIATION

TETRA Moving Forward in Poland

- Hyatt Regency Warsaw, July 8, 2010

TETRA ASSOCIATION

Contents

- 1. DIGITAL MOBILE RADIO: KEY FACTORS
- 2. TETRA NETWORK MODEL
- 3. METRO AND RAILWAY APPLICATION MODEL
- 4. MOBILE RADIO SYSTEMS IN AUTOMATED METRO
- 5. SDS TL PROTOCOL AS A SUPPORT TO EXPLOITATION
- 6. ERTMS: TETRA vs. GSM-R
- 7. CONCLUSIONS
- 8. REFERENCES

Mobile Digital Radio: Key factors

- Improving voice quality
- Introducing security criteria:
 - Authentication / Remote disabling
 - Encryption
- Data transmission: ST, SDS, PD, CD
- Connectivity: Ethernet/IP, analogue networks, ...
- Applications Platform (Ethernet based API's)
- Optimised Location (GPS, beacons)
- Low resolution video
- Data bases
- Dispatching centres
- Exploitation Support in Automated Metros
- Signaling and Control Applications

TETRA ASSOCIATION

TETRA Network Model

Typical requirements in Metro and Railway

- Full and half duplex calls (private and group)
- Built-in emergency button
- Status and short data services for specific control applications
- Operational console integrated into the driving dashboard
- Interaction with the Passenger Information System
- Interaction with the Train Control and Monitoring System.
- Integration of TETRA and analogue

Specific metro and railway functions:

- Voice calls to and from the Dispatching Centre
- Public announcements and ambience listening
- Functional and location dependant addressing
- Emergency braking activation
- Fire extinguishers activation
- Train switch on / switch off
- Update of the information panels
- Discreete location (beacons)
- Alarm management
- Update of the TCMS parameters

On Board Subsystems:

Basic configuration

TETRA ASSOCIATION

(1 Rack & 2 consoles)

Redundant configuration

TETRA ASSOCIATION

(2 Racks & 2 consoles, joined for redundancy functions)

On Board Subsystems: Summary

High level of customization to adapt to:

Different train makers:

(Alstom, Siemens, CAF, Ansaldobreda, Bombardier...).

- Different power supply levels and signaling: (+110v DC, +72v DC, +24v DC).
- Different operational requirements.
- Available mounting spaces.
- Custom consoles.

Example of TETRA Infrastructure

TETRA ASSOCIATION

SCN: Switching & Control Node

SCN DIAGRAM SNI SNI SNI Line Dispatcher / VolP Gateway CNC **Ethernet Switch** Telephone Gateway NMS Server SMS-GSM Gateway MAM Voice Recorder Remote Maintenance Gateway Firewall Line Dispatcher 3rd. Party Portal N2A **NMS Client**

SBS: Base Station Site

NEBULA® Implementation

Supports up to 4 control channels per SBS → more capacity for SDS

Base Station 2

TCH TCH TCH TCH

Supports Circuit Data Service → more options of data services for control applications

- GPS-less at Base Stations \rightarrow easier installation in tunnels
- Allows the use of Ethernet backbones (does not require E1 links)

TETRA in Automated Metros

Three sub-system to manage:

 Automatic Train Control systems (ATC) is based in CBTC signalling for driving operation and a set of additional control functions needed to provide realiability and security to the system.

TETRA

- TETRA may contribute to the system:
 - Communication with passengers from driver or control center
 - Telemetry of mobile equipments (emergency breaking, fire detection, air conditioning, lights, ambience music, etc...)
 - Back-up system for ATC system

Application Model

SDS TL based Protocol

TETRA ASSOCIATION

The communication needs identified in the application model can be managed through this standard TETRA

Service: SDS-TL

SDS TL Service

Application - Control

SDS TL based Protocol

TETRA ASSOCIATION

PROTOCOL ID = C0H (ETSI registered)

TYPE OF MESSAGE

ACK

SS

ST

MESSAGE REFERENCE (counter)

TEXT SCHEME = 01H (8-bit latin alphabet)

PROPIETARY APPLICATION CODE

COMMAND

TRAIN NUMBER / TYPE OF TRAIN

COMMAND PARAMETERS

Security Commands

TETRA ASSOCIATION

TYPES OF COMMANDS

EMERGENCY BRAKING

BYPASS OF BRAKE / TRACTION LOOP

PUBLIC ADDRESSING MESSAGE

DISABLE SERVICE BRAKE

FIRE DETECTION / FIRE EXTINGUISHERS ACTIVATION

DETECT ALARM HANDLE UNATTENDED

DOORS OPEN / CLOSE

Exploitation Commands

TETRA ASSOCIATION

TYPES OF COMMANDS

TRAIN SWITCH ON / SWITCH OFF

TRAIN BIRTH (Number and Type of Train, Driver)

EXTERNAL / INTERNAL PANELS CONTENT

LIGHTS / MUSIC / VIDEO / CLIMATIZATION

TCMS CONFIGURATION/ DRIVING MODE

TRAIN LOCATION (SBS or BEACONS)

VOICE GROUP CHANGE (SBS or BEACONS)

Maintenance Commands

TETRA ASSOCIATION

TYPES OF COMMANDS

DIAGNOSIS / REQUEST / SENDING ALARMS

TRAIN TIME SETUP

PANTOGRAPH UP / DOWN

NEUMATIC SUSPENSION DISABLE / ENABLE

VOLTAGE INTERRUPTOR

REMOTE SOFTWARE DOWNLOADING (circuit data)

ATP SYSTEM RESET

Example: Start-up Sequence

with TL_REPORT

CCC = Command & Control Centre

TCMS = Train Control & Monitoring System

ERTMS: TETRA vs. GSM-R

TETRA ASSOCIATION

ERTMS (European Rail Traffic Management System) =

ETCS (European Train Control System) + GSM-R (radio communication system)

TETRA is a real alternative for the GSM-R sub-system

Customers can select between a more flexible range of alternatives to design the best solution (configuration, cost, etc...)

TETRA vs. GSM-R (main issues)

GSM-R

TETRA
are the usual requirements vstems
tks in 400 MHz, requiring less the base stations than n GSM-R
ctrum efficiency is double that
/ terminals

Security normatives: -EN50155, EN60950, EN50124, EN50153, EN50125, EN50121-3-2	ОК	Ok Note: these are the usual requirements for metro systems
EIRENE functional requirements: -Voice / Data / Railway specific services	ОК	Ok
Coverage and performance	900 MHz Up-to 8W Terminals (according to Eirene)	 TETRA works in 400 MHz, requiring less than half of the base stations than needed with GSM-R TETRA spectrum efficiency is double that of GSM-R Up-to 10W terminals
Seamless handover: Eirene estimation to be confirmed through user trials, 300 mseg	Ok	Ok
-Network registration delay	- 95% <30sg	- Always < 1s
-Connection Establishment delay	- Emerg < 2s Others < 10s	- Always average of 300ms

Conclusions

- Mobile Digital Radio is dominant in Transport today
- TETRA is the most implemented technology
- TETRA is suitable to support exploitation in Metros (Manual or Automated)
- TETRA may be a real alternative for the GSM-R subsystem in a railway network based on ERTMS

Some Teltronic references

TETRA ASSOCIATION

Teltronic has real experience in working with different train manufacturers, integrators and signalling providers:

ETRA – Valencia Railways, Alicante Tramway, Spain SAMPOL – Mallorca Metro, Spain ALSTOM, CAF, ABERTIS – Barcelona Metro Line 9, Spain METRO MADRID, CAF, ANSALDOBREDA – Madrid Metro, Spain COBRA, ETRA – Madrid Light Trains, Spain ALSTOM – Parla Tramway, Spain ALSTOM – Mexico D.F. Metro Line 12, Mexico CYS GROUP – Mexico D.F. Metro Lines 2 and B, Mexico SUPERVIA – Rio de Janeiro Railway, Brazil EFACEC – Constantine and Oran Tramways, Algeria EFACEC-IKUSI – Tenerife Light Rail, Spain RUSSIAN RAILWAY – Moscow-St. Petersburg line, Russia SIEMENS – Santiago Metro, Lines 4 and 4A, Chile **SIEMENS** – Algiers Metro, Algeria THALES - Buenavista-Cuautitlán, México D.F., Mexico T-SYSTEMS – Nuremberg Metro, Germany T-SYSTEMS - KÖR Tramways, Germany

TETRA ASSOCIATION

Some pictures of real projects

Barcelona Metro (CAF-ALSTOM)

Barcelona Metro (CAF-ALSTOM)

Mallorca Metro (CAF)

Madrid Metro (CAF)

Madrid Metro (CAF)

Nuremberg Metro (Siemens)

Santiago Chile Metro (Siemens)

Tenerife Light Train (Alstom)

Mexico D.F. Metro (CAF)

TETRA

Felipe Calderón, President of Mexico, driving a train. TETRA console on the left

Thank you for your attention!

pclemons@teltronic.es www.teltronic.es