The TETRA Rail Forum

Robin Davis
Chairman
TETRA Rail Forum
Welcome
Agenda

• TETRA Rail Market Situation
• Objectives of the Forum
• GSM(R) & TETRA
• Closing Thoughts
TETRA has been adopted by many Railway Clients including:

- London Underground
- Dubai Metro, UAE
- Bilbao Metro, Spain
- Copenhagen Metro
- French SNCF
- Bangkok MRTA
- Hong Kong KCRC
- Malaysia Express Rail Link
- Singapore Mass Rapid Transit
- Taiwan National Railway
- Hong Kong MTRC
- Taiwan High Speed Rail

Abu Dhabi 2011
The Facts

- **TETRA is currently the most popular radio technology in Metro/Urban systems.**
- **Almost 100% of new digital mobile radio deployment in Urban Rail & Metros rely on TETRA.**
- **Today 25% of the world market for TETRA is in Rail.**
- **TETRA is a proven competitor over GSM(R).**
Objectives of the Forum
• In July 2006 the TETRA Association created the TETRA Rail working group.

• Today > 25 Members from Industry

• Aims and Objectives are:
 – To consolidate the Rail needs for voice & data
 – To learn from the existing applications for Metros/Urban Rail and Railways
 – To identify the eventual “gap” between TETRA present features plus near future TETRA road map and the Rail requirements
 – To add this information to the TETRA Association website

 www.tetraassociation.com
Will TETRA ever replace GSM(R)?
The Requirements

Complex Requirements

High Speed
Passenger Density
Environments Mix
Safety Critical
Voice & Data Requirements
Data Intense
Limited Stopping

Communications Requirements

Radio Train Mobile
Radio Hand-held
Public Address
Passenger Call
Telephony
Mobile Data
Telemetry
Train Status Information
Remote Controls
Alarms
Passenger Information
Signalling
TETRA Instead of GSM(R)

Are there design elements that are particular & proprietary to GSM-R?

<table>
<thead>
<tr>
<th>GSM(R) Data</th>
<th>TETRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Call setup < 5 sec (95%)</td>
<td>✓ yes (GSM is actually slow)</td>
</tr>
<tr>
<td>• Connection failure probability < 10-3</td>
<td>✓ yes (Radio engineering)</td>
</tr>
<tr>
<td>• BER < 10-4 for 90% of the time</td>
<td>✓ yes (Radio engineering)</td>
</tr>
<tr>
<td>• Maximum end to end delay < 0.5 sec (95%)</td>
<td>✓ yes on a single switch *</td>
</tr>
<tr>
<td>• Average end-to-end delay (30 Octet frame) 400 to 500ms</td>
<td>✓ yes on single switch</td>
</tr>
<tr>
<td>• Probability of connection loss <10-4</td>
<td>✓ (Radio engineering)</td>
</tr>
<tr>
<td>• Maximum break during handover < 300mS</td>
<td>1.4 sec (improve with eng, system loading & BS sync ?)</td>
</tr>
<tr>
<td>• Connection loss indication time < 1 sec</td>
<td>✓ (Radio engineering)</td>
</tr>
<tr>
<td>• Availability > 99.95%</td>
<td>✓ (System engineering)</td>
</tr>
<tr>
<td>• Interface at network ISDN PRI</td>
<td>✓ (Engineering)</td>
</tr>
<tr>
<td>• Interface on the train V.24 (non mandatory)</td>
<td>✓ yes</td>
</tr>
<tr>
<td>• Data rate (2.4 or 4.8kb/s)</td>
<td>✓ yes</td>
</tr>
<tr>
<td>(Requirement deliberately set low to reduce errors & retransmissions requests)</td>
<td>(Requirement deliberately set low to reduce errors & retransmissions requests)</td>
</tr>
</tbody>
</table>

The answer is substantially No.
TETRA Instead of GSM(R)

Are there design elements that are particular & proprietary to GSM-R?

<table>
<thead>
<tr>
<th>GSM(R) Voice</th>
<th>TETRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Individual Call</td>
<td>✓ yes (standard in trunking systems)</td>
</tr>
<tr>
<td>• Duplex calling</td>
<td>✓ yes</td>
</tr>
<tr>
<td>• Group Call</td>
<td>✓ yes (GSM-R is light in this area)</td>
</tr>
<tr>
<td>• Voice broadcast call</td>
<td>✓ yes</td>
</tr>
<tr>
<td>• Location dependant addressing</td>
<td>✓ yes with GPS & dynamic regrouping</td>
</tr>
<tr>
<td>• Functional addressing & display</td>
<td>✓ yes with despatch and on-board systems</td>
</tr>
<tr>
<td>• Priority services</td>
<td>✓ yes</td>
</tr>
<tr>
<td>• Acknowledgement centre</td>
<td>✓ yes</td>
</tr>
</tbody>
</table>

The answer is substantially No.
Is it all about the safety case?

- **Relevant Safety related ETSI standards**
 - Railway Applications – Communications, Signalling and
 - Processing Systems – Safety related Electronic Systems for Signalling (EN 50129, EN 50129-1, EN 50129-2) the last two standards refer to additional conditions for data Communications
 - RAMS (EN 50126)
 - Railway Applications – Communications, Signalling and
 - Processing Systems – Safety related Software Systems for
 - Signalling (EN 50128), this standard refers to additional conditions for Software

- **Main Objective**
 - To specify those life-cycle activities which shall be carried out and successfully completed before and after the system acceptance.

- **Question?**
 - The UIC In Europe has made its decision a while ago on GSM(R), but why can’t a local rail operator undertake a pilot and create their own safety case for long haul railways?
 - Is this an opportunity for Middle East and Asia Rail Operating Companies?
In Closing
TETRA in Rail

- **TETRA** is successfully deployed in a wide variety of railway applications worldwide.

- **TETRA has the functionality to meet the requirements of the rail operator.**

- **The continued development of TETRA with TEDS and other applications will provide operating benefits to the transportation industry around the world.**

- **GSM(R) is the chosen technology for Europe, but there is no reason why other long haul rail operators cannot create their own safety cases and seek approval from local rail safety regulators.**

Abu Dhabi 2011
Thank You
Robin Davis
Chairman TETRA Rail Forum
And
Projects Director
Actica Consulting Ltd
Email: robin.davis@actica.co.uk
Telephone: + 44 7901 855605